Liquid Particles Tracing in Three-dimensional Buoyancy-driven Flows
نویسندگان
چکیده
Buoyancy-driven convective flows are numerically analyzed in a cubic enclosure, containing a liquid subjected to a temperature difference between opposite lateral walls; all other walls are thermally insulated. The stationary gravity vector is perpendicular to the applied temperature gradient. The steady flow patterns are investigated within the framework of a liquid particles tracing technique. Three tracing techniques are compared: the first, based on a trilinear interpolation of the liquid velocity defined on the computational grid and an eighth order in time Runge-Kutta method; the second and the third, using a resampling the velocity field on a new approximately twice finer grid by cubic spline interpolation and then a combination of trilinear interpolation of velocity on the new grid, integrating in time with (2-nd method) a single forward time marching method; (3-rd method) a fourth order Runge-Kutta algorithm. Comparison of the results shows that for obtaining a precise tracing on a long time scale it is more important to have a good spatial velocity accuracy than precise integration in time. Unlike one vortex 2D pattern where the particles follow thin and closed circle trajectories staying in vertical cross-sections, it is shown that,the 3D flow consists of two sets of spiral-type motions identical in both halves of the cell with respect to the mid-plane. In the 3D flow even in the central vertical cross-section the particles follow spiral non-closed trajectories drifting outward the cube’s walls. It demonstrates that two-dimensional approach does not provide a clear picture of 3D convection. keyword: Particle tracing, convective flow, buoyancy.
منابع مشابه
Irreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling
Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...
متن کاملHydrodynamics Analysis of Density Currents
Density Current is formed when a fluid with heavier density than the surrounding fluid flows down an inclined bed. These types of flows are common in nature and can be produced by; salinity, temperature inhomogeneities, or suspended particles of silt and clay. Driven by the density difference between inflow and clear water in reservoirs, density current plunges clear water and moves towards a d...
متن کاملFlows with suspended and floating particles
The evolution of the configuration of a set of particles dispersed in a flowing liquid is crucial in many applications such as sedimentation, slurry transport, rheology and structured arrays of micro and nano particles. Direct Simulation based on what is called Fictitious Domain Method coupled with Finite Element Method has been used to study particulate flows and sedimentation process. Here we...
متن کاملSimilarity models for unsteady free convection flows along a differentially cooled horizontal surface
A class of unsteady free convection flows over a differentially cooled horizontal surface is considered. The cooling, specified in terms of an imposed negative buoyancy or buoyancy flux, varies laterally as a step function with a single step change. As thermal boundary layers develop on either side of the step change, an intrinsically unsteady, boundary-layer-like flow arises in the transition ...
متن کاملAn auxiliary grid method for computations of multiphase flows in complex geometries
A method is developed for computations of interfacial flows in complex geometries. The method combines a fronttracking method with a newly developed finite volume (FV) scheme and utilizes an auxiliary grid for computationally efficient tracking of interfaces in body-fitted curvilinear grids. The tracking algorithm reduces particle tracking in a curvilinear grid to tracking on a uniform Cartesia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006